280326 VU VU Numerical methods (PI) (2021W)
Continuous assessment of course work
Labels
MIXED
Registration/Deregistration
Note: The time of your registration within the registration period has no effect on the allocation of places (no first come, first served).
- Registration is open from We 08.09.2021 10:00 to We 29.09.2021 23:59
- Registration is open from Fr 01.10.2021 10:00 to We 13.10.2021 23:59
- Deregistration possible until We 13.10.2021 23:59
Details
max. 90 participants
Language: English
Lecturers
- Leopold Haimberger
- Ryan Leaman
- Edward James Lilley
- Núria Miret Roig
- Alice Zocchi
- Petrus Martinus van de Ven
- Mathias Lechthaler (Student Tutor)
Classes (iCal) - next class is marked with N
[UPDATE 22.11.2021] - Starting from tomorrow, all lectures and exercise sessions will take place exclusively online through Zoom sessions in Moodle. Tutoring sessions will take place exclusively online through Zoom sessions in Moodle.
[UPDATE 18.01.2022] Exams will be online -- the second exam will take place on February 1st at 15:00. Details will be available on Moodle.
- Tuesday 05.10. 15:00 - 17:30 Geol.-Praktikumsraum 2B201 2.OG UZA II
- Thursday 07.10. 09:45 - 11:15 Littrow-Hörsaal Astronomie Sternwarte, Türkenschanzstraße 17
-
Thursday
07.10.
11:30 - 13:00
Littrow-Hörsaal Astronomie Sternwarte, Türkenschanzstraße 17
Seminarraum 1 Astronomie Sternwarte, Türkenschanzstraße 17 - Tuesday 12.10. 15:00 - 17:30 Geol.-Praktikumsraum 2B201 2.OG UZA II
- Thursday 14.10. 09:45 - 11:15 Littrow-Hörsaal Astronomie Sternwarte, Türkenschanzstraße 17
-
Thursday
14.10.
11:30 - 13:00
Littrow-Hörsaal Astronomie Sternwarte, Türkenschanzstraße 17
Seminarraum 1 Astronomie Sternwarte, Türkenschanzstraße 17 - Tuesday 19.10. 15:00 - 17:30 Geol.-Praktikumsraum 2B201 2.OG UZA II
- Thursday 21.10. 09:45 - 11:15 Littrow-Hörsaal Astronomie Sternwarte, Türkenschanzstraße 17
-
Thursday
21.10.
11:30 - 13:00
Littrow-Hörsaal Astronomie Sternwarte, Türkenschanzstraße 17
Seminarraum 1 Astronomie Sternwarte, Türkenschanzstraße 17 - Thursday 28.10. 09:45 - 11:15 Littrow-Hörsaal Astronomie Sternwarte, Türkenschanzstraße 17
-
Thursday
28.10.
11:30 - 13:00
Littrow-Hörsaal Astronomie Sternwarte, Türkenschanzstraße 17
Seminarraum 1 Astronomie Sternwarte, Türkenschanzstraße 17 - Thursday 04.11. 09:45 - 11:15 Littrow-Hörsaal Astronomie Sternwarte, Türkenschanzstraße 17
-
Thursday
04.11.
11:30 - 13:00
Littrow-Hörsaal Astronomie Sternwarte, Türkenschanzstraße 17
Seminarraum 1 Astronomie Sternwarte, Türkenschanzstraße 17 - Tuesday 09.11. 15:00 - 17:30 Geol.-Praktikumsraum 2B201 2.OG UZA II
- Thursday 11.11. 09:45 - 11:15 Littrow-Hörsaal Astronomie Sternwarte, Türkenschanzstraße 17
-
Thursday
11.11.
11:30 - 13:00
Littrow-Hörsaal Astronomie Sternwarte, Türkenschanzstraße 17
Seminarraum 1 Astronomie Sternwarte, Türkenschanzstraße 17 - Tuesday 16.11. 15:00 - 17:30 Geol.-Praktikumsraum 2B201 2.OG UZA II
- Thursday 18.11. 09:45 - 11:15 Littrow-Hörsaal Astronomie Sternwarte, Türkenschanzstraße 17
-
Thursday
18.11.
11:30 - 13:00
Littrow-Hörsaal Astronomie Sternwarte, Türkenschanzstraße 17
Seminarraum 1 Astronomie Sternwarte, Türkenschanzstraße 17 - Tuesday 23.11. 15:00 - 17:30 Geol.-Praktikumsraum 2B201 2.OG UZA II
- Thursday 25.11. 09:45 - 11:15 Littrow-Hörsaal Astronomie Sternwarte, Türkenschanzstraße 17
-
Thursday
25.11.
11:30 - 13:00
Littrow-Hörsaal Astronomie Sternwarte, Türkenschanzstraße 17
Seminarraum 1 Astronomie Sternwarte, Türkenschanzstraße 17 - Tuesday 30.11. 15:00 - 17:30 Geol.-Praktikumsraum 2B201 2.OG UZA II
- Thursday 02.12. 09:45 - 11:15 Littrow-Hörsaal Astronomie Sternwarte, Türkenschanzstraße 17
-
Thursday
02.12.
11:30 - 13:00
Littrow-Hörsaal Astronomie Sternwarte, Türkenschanzstraße 17
Seminarraum 1 Astronomie Sternwarte, Türkenschanzstraße 17 - Tuesday 07.12. 15:00 - 17:30 Geol.-Praktikumsraum 2B201 2.OG UZA II
- Thursday 09.12. 09:45 - 11:15 Littrow-Hörsaal Astronomie Sternwarte, Türkenschanzstraße 17
-
Thursday
09.12.
11:30 - 13:00
Littrow-Hörsaal Astronomie Sternwarte, Türkenschanzstraße 17
Seminarraum 1 Astronomie Sternwarte, Türkenschanzstraße 17 - Tuesday 14.12. 15:00 - 17:30 Geol.-Praktikumsraum 2B201 2.OG UZA II
- Thursday 16.12. 09:45 - 11:15 Littrow-Hörsaal Astronomie Sternwarte, Türkenschanzstraße 17
-
Thursday
16.12.
11:30 - 13:00
Littrow-Hörsaal Astronomie Sternwarte, Türkenschanzstraße 17
Seminarraum 1 Astronomie Sternwarte, Türkenschanzstraße 17 - Tuesday 11.01. 15:00 - 17:30 Geol.-Praktikumsraum 2B201 2.OG UZA II
- Thursday 13.01. 09:45 - 11:15 Littrow-Hörsaal Astronomie Sternwarte, Türkenschanzstraße 17
-
Thursday
13.01.
11:30 - 13:00
Littrow-Hörsaal Astronomie Sternwarte, Türkenschanzstraße 17
Seminarraum 1 Astronomie Sternwarte, Türkenschanzstraße 17 - Tuesday 18.01. 15:00 - 17:30 Geol.-Praktikumsraum 2B201 2.OG UZA II
- Thursday 20.01. 09:45 - 11:15 Littrow-Hörsaal Astronomie Sternwarte, Türkenschanzstraße 17
-
Thursday
20.01.
11:30 - 13:00
Littrow-Hörsaal Astronomie Sternwarte, Türkenschanzstraße 17
Seminarraum 1 Astronomie Sternwarte, Türkenschanzstraße 17 - Tuesday 25.01. 15:00 - 17:30 Geol.-Praktikumsraum 2B201 2.OG UZA II
- Thursday 27.01. 09:45 - 11:15 Littrow-Hörsaal Astronomie Sternwarte, Türkenschanzstraße 17
-
Thursday
27.01.
11:30 - 13:00
Littrow-Hörsaal Astronomie Sternwarte, Türkenschanzstraße 17
Seminarraum 1 Astronomie Sternwarte, Türkenschanzstraße 17
Information
Aims, contents and method of the course
Assessment and permitted materials
Total grade: lectures 50% + exercises 50%Lectures: Two mini-tests, currently planned on 9 December 2021 and 1 February 2022 and contributing respectively 20% and 30% to the final 50% grade from the lectures.Exercises: weekly homework based on the lectures topics. The grade will depend on the following components: number of exercise sheets handed in, evaluation of a sub-set of the submitted exercises, evaluation of the submitted report for a mini-project, and evaluation of 2 blackboard (or online) presentation during the exercise sessions. The exact contributions of these items to the exercise grade will be communicated at the beginning of the course.
Minimum requirements and assessment criteria
In both parts (lectures and exercises, including the mini-project) a minimum of 50% has to be achieved to count as passing. The submission of at least 6/9 exercise sheets is also required. Moreover, each student is required to give at least one successful solution presentation during the exercise sessions.
Examination topics
Based on the content of the lectures, for each of the two parts of the course (the first focused more on statistics, the second on numerical methods). Homeworks, solved as part of the exercises, will aid and test students' understanding of the material covered in the lectures by applying statistical tools and numerical methods to real datasets.
Reading list
The lecture notes are provided as PDF files.Selected chapters in the following literature are recommended:
- Statistics in Theory and Practice (Robert Lupton) [online version available at the library]
- Statistics, Data Mining, and Machine Learning in Astronomy: A Practical Python Guide for the Analysis of Survey Data (Ivezić, Željko et al.) [only physical copies]
- Press, Teukolsky, Vetterling, Flannery: Numerical Recipes
- DeGroot and Shervish: Probability and Statistics
- Strang, G.: Introduction to Applied Mathematics
- Durran, D.: Numerical Methods for Wave Equations in Fluid Dynamics
- Hantel and Haimberger: Grundkurs Klima (Chap 2), Springer 2016
- Statistics in Theory and Practice (Robert Lupton) [online version available at the library]
- Statistics, Data Mining, and Machine Learning in Astronomy: A Practical Python Guide for the Analysis of Survey Data (Ivezić, Željko et al.) [only physical copies]
- Press, Teukolsky, Vetterling, Flannery: Numerical Recipes
- DeGroot and Shervish: Probability and Statistics
- Strang, G.: Introduction to Applied Mathematics
- Durran, D.: Numerical Methods for Wave Equations in Fluid Dynamics
- Hantel and Haimberger: Grundkurs Klima (Chap 2), Springer 2016
Association in the course directory
Last modified: Th 31.10.2024 00:16
This will be achieved through lectures focused on the theory and exercises focused on the practical implementation of statistical tools and numerical methods. The programming language that will be used to present algorithms is python; students will receive an introductory tutorial to provide them with the necessary background to successfully carry out the computational tasks.