Warning! The directory is not yet complete and will be amended until the beginning of the term.
280390 VO MA PE 01 VO Inverse Problems (NPI) (2019W)
Labels
Registration/Deregistration
Note: The time of your registration within the registration period has no effect on the allocation of places (no first come, first served).
Details
max. 20 participants
Language: English
Examination dates
Lecturers
Classes (iCal) - next class is marked with N
- Thursday 03.10. 12:00 - 14:30 Seminarraum Paläontologie 2B311 3.OG UZA II
- Thursday 10.10. 12:00 - 14:30 Seminarraum Paläontologie 2B311 3.OG UZA II
- Thursday 17.10. 12:00 - 14:30 Seminarraum Paläontologie 2B311 3.OG UZA II
- Thursday 24.10. 12:00 - 14:30 Seminarraum Paläontologie 2B311 3.OG UZA II
- Thursday 31.10. 12:00 - 14:30 Seminarraum Paläontologie 2B311 3.OG UZA II
- Thursday 07.11. 12:00 - 14:30 Seminarraum Paläontologie 2B311 3.OG UZA II
- Thursday 14.11. 12:00 - 14:30 Seminarraum Paläontologie 2B311 3.OG UZA II
- Thursday 21.11. 12:00 - 14:30 Seminarraum Paläontologie 2B311 3.OG UZA II
- Thursday 28.11. 12:00 - 14:30 Seminarraum Paläontologie 2B311 3.OG UZA II
- Thursday 05.12. 12:00 - 14:30 Seminarraum Paläontologie 2B311 3.OG UZA II
- Thursday 12.12. 12:00 - 14:30 Seminarraum Paläontologie 2B311 3.OG UZA II
- Thursday 09.01. 12:00 - 14:30 Seminarraum Paläontologie 2B311 3.OG UZA II
- Thursday 16.01. 12:00 - 14:30 Seminarraum Paläontologie 2B311 3.OG UZA II
- Thursday 23.01. 12:00 - 14:30 Seminarraum Paläontologie 2B311 3.OG UZA II
- Thursday 30.01. 12:00 - 14:30 Seminarraum Paläontologie 2B311 3.OG UZA II
Information
Aims, contents and method of the course
Assessment and permitted materials
oral examination
Minimum requirements and assessment criteria
Examination topics
Reading list
R.C. Aster, B. Borchers, C.H. Thurber: Parameter Estimation and Inverse Problems, Elsevier, 2013
Association in the course directory
Last modified: Sa 02.04.2022 00:25
-- Linear regression (and statistical aspects of least squares)
-- Discretization of inverse problems (mainly integrals)
-- Ill posed problems and rank deficiency
-- Tikhonov regularization
-- Nonlinear regression (Newton method,...).
-- Bayesian approachAll these chapter will be complemented with exercises (Matlab or Python).