Warning! The directory is not yet complete and will be amended until the beginning of the term.
280511 VU PM-FnNawi Statistical Methods in Astronomy (PI) (2017W)
Continuous assessment of course work
Labels
Registration/Deregistration
Note: The time of your registration within the registration period has no effect on the allocation of places (no first come, first served).
- Registration is open from Th 14.09.2017 10:00 to Th 28.09.2017 23:59
- Registration is open from Tu 03.10.2017 10:00 to Th 19.10.2017 23:59
- Deregistration possible until Th 19.10.2017 23:59
Details
max. 25 participants
Language: English
Lecturers
Classes (iCal) - next class is marked with N
- Wednesday 11.10. 13:15 - 14:45 Seminarraum 1 Astronomie Sternwarte, Türkenschanzstraße 17
- Wednesday 18.10. 13:15 - 14:45 Seminarraum 1 Astronomie Sternwarte, Türkenschanzstraße 17
- Wednesday 25.10. 13:15 - 14:45 Seminarraum 1 Astronomie Sternwarte, Türkenschanzstraße 17
- Wednesday 08.11. 13:15 - 14:45 Seminarraum 1 Astronomie Sternwarte, Türkenschanzstraße 17
- Wednesday 15.11. 13:15 - 14:45 Seminarraum 1 Astronomie Sternwarte, Türkenschanzstraße 17
- Wednesday 22.11. 13:15 - 14:45 Seminarraum 1 Astronomie Sternwarte, Türkenschanzstraße 17
- Wednesday 29.11. 13:15 - 14:45 Seminarraum 1 Astronomie Sternwarte, Türkenschanzstraße 17
- Wednesday 06.12. 13:15 - 14:45 Seminarraum 1 Astronomie Sternwarte, Türkenschanzstraße 17
- Wednesday 13.12. 13:15 - 14:45 Seminarraum 1 Astronomie Sternwarte, Türkenschanzstraße 17
- Wednesday 10.01. 13:15 - 14:45 Seminarraum 1 Astronomie Sternwarte, Türkenschanzstraße 17
- Wednesday 17.01. 13:15 - 14:45 Seminarraum 1 Astronomie Sternwarte, Türkenschanzstraße 17
- Wednesday 24.01. 13:15 - 14:45 Seminarraum 1 Astronomie Sternwarte, Türkenschanzstraße 17
- Wednesday 31.01. 13:15 - 14:45 Littrow-Hörsaal Astronomie Sternwarte, Türkenschanzstraße 17
Information
Aims, contents and method of the course
The lecture course gives an introductory overview of statistical methods that are important for astronomical research: - basics of probability theory - frequentist vs. Bayesian statistics - parameter estimation, robust methods - linear and non-linear regression, model fitting and model selection - density estimation - clustering and classification - time series analysis. Practical examples will be presented using R (software environment for statistical computing; prior knowledge is not required).
Assessment and permitted materials
Lecture attendance - exercises - end-of-term exam
Minimum requirements and assessment criteria
Examination topics
Reading list
Association in the course directory
Last modified: Mo 07.09.2020 15:42