Warning! The directory is not yet complete and will be amended until the beginning of the term.
300489 VO Growth and Proportion (2015W)
Basics of biosystemstheory II
Labels
FR. 10.15-12.00 Uhr im Seminarraum des Department für Theoretische Biologie, 2. Ebene, 4. Spange, UZA 1, Biozentrum Althanstraße 14, 1090 WienBeginn: 02.10.2015
Details
Language: German, English
Examination dates
Lecturers
Classes
Die Vorlesung findet FR von 10 Uhr c.t bis 12.00 Uhr im Seminaraum der Theoretischen Biologie, UZA 1, Biozentrum Althanstraße 14, 1090 Wien, 2. Ebene, 4. Spange statt.
Beginn: 02.10.2015; die weiteren Vorlesungstermine sind 09.10.2015, 16.10.2015, 23.10.2015, 30.10.2015, 06.11.2015, 13.11.2015, 20.11.2015, 27.11.2015, 04.12.2015, 11.12.2015, 15.01.2016. Als Ersatztermin sind 22.01.2016, und 29.01.2016 vorgesehen.
Information
Aims, contents and method of the course
Assessment and permitted materials
either continuos assessment of participation (in particular, the discussion during lecturing) or oral examination
Minimum requirements and assessment criteria
The lecture should impart to students of biology basics of the focal biosystems-theoretical terms system growth, and proportion.
Examination topics
Reading list
(1) BERTALANFFY, L. von. 1993. General System Theory. G. Braziller, New York.
(2) BANKS, R.B. 1994. Growth and Diffusion Phenomena. Springer, Berlin.
(2) BANKS, R.B. 1994. Growth and Diffusion Phenomena. Springer, Berlin.
Association in the course directory
MZO W-3, MEV W-2
Last modified: Mo 07.09.2020 15:43
Besides basic criteria for defining 'biological systems' (e.g., system -element, distinctness, connectivity, input, output, composition, decomposition, steady state), elementary terms of growth modeling (e.g., growth rates, growth filters, carrying capacity) will be introduced. From growth models, the exponential, logistic, Bertalanffy, Gompertz, and fractal growth (Verhulst dynamic) are thorougly discussed leading to the fundamentals of allometric research (e.g., size vs. shape, 'Gestalt', univariate vs. multivariate approaches in allometry, isometry, power laws). The theoretical representations will be illustrated by various examples from biology.