301629 UE Laboratory course: Mathematics (2017W)
Continuous assessment of course work
Labels
Summary
Registration/Deregistration
Note: The time of your registration within the registration period has no effect on the allocation of places (no first come, first served).
- Registration is open from Th 07.09.2017 08:00 to Th 21.09.2017 18:00
- Deregistration possible until Tu 31.10.2017 18:00
Registration information is available for each group.
Groups
Group 1
max. 45 participants
Language: German
LMS: Moodle
Lecturers
Classes
Kurs 1 mit Esther Heid findet Fr 13:00 statt
Erste Einheit: 5./6.10.Gruppe 1 (Esther Heid): Freitags 13:00-14:30 Hörsaal 4 Chemie Währingerstraße 42 2H23Gruppe 2 (Veronika Zeindlhofer): Donnerstags 13:00-14:30 Hörsaal 3 Chemie Währingerstraße 38 1H04
Gruppe 3 (Veronika Zeindlhofer und Philipp Honegger): Donnerstags 14:30-16:00 Hörsaal 3 Chemie Währingerstraße 38 1H04
Gruppe 4 (Philipp Honegger): Donnerstags 13:00-14:30 Hörsaal 4 Chemie Währingerstraße 42 2H23
Aims, contents and method of the course
Assessment and permitted materials
Compulsory attendance; the evaluation consists of different performances: active participation and homework, mid term and final exam (the percentage of the subgrades will be announced by the course leader).
Minimum requirements and assessment criteria
Prerequisites: none
Procedure: weekly classes
Grading: compulsory attendance, class participation,
Mid-term and final exam
Goals: Acquiring of basic practical mathematical skills
Procedure: weekly classes
Grading: compulsory attendance, class participation,
Mid-term and final exam
Goals: Acquiring of basic practical mathematical skills
Group 2
max. 45 participants
Language: German
LMS: Moodle
Lecturers
Classes
Kurs 2 mit Veronika Zeindlhofer findet Do 13:00 statt!
Erste Einheit: 5./6.10.Gruppe 1 (Esther Heid): Freitags 13:00-14:30 Hörsaal 4 Chemie Währingerstraße 42 2H23Gruppe 2 (Veronika Zeindlhofer): Donnerstags 13:00-14:30 Hörsaal 3 Chemie Währingerstraße 38 1H04
Gruppe 3 (Veronika Zeindlhofer und Philipp Honegger): Donnerstags 14:30-16:00 Hörsaal 3 Chemie Währingerstraße 38 1H04
Gruppe 4 (Philipp Honegger): Donnerstags 13:00-14:30 Hörsaal 4 Chemie Währingerstraße 42 2H23
Aims, contents and method of the course
Basic arithmetics of complex numbers as well as polar and cartesian coordinates and Euler's theorem, Definition of a function, continuity,
limits, differentiation, extreme value problems, Basic integration techniques (integration by parts and substitution), antiderivatives and definite integrals, Some selected topics in analysis, Taylor and MacLaurin series, partial differentiation, Calcation of extreme values for functions of two variables, first order differential equations (separable, linear inhomogeneous), second order differential equations (linear, constant coefficients), Basic linear algebra (matrices and vectors)
limits, differentiation, extreme value problems, Basic integration techniques (integration by parts and substitution), antiderivatives and definite integrals, Some selected topics in analysis, Taylor and MacLaurin series, partial differentiation, Calcation of extreme values for functions of two variables, first order differential equations (separable, linear inhomogeneous), second order differential equations (linear, constant coefficients), Basic linear algebra (matrices and vectors)
Assessment and permitted materials
Compulsory attendance; the evaluation consists of different performances: active participation and results obtained, written report, theoretical knowledge including final exam (the percentage of the subgrades will be announced by the course leader); each of the subgrades must have a positive evaluation.
Minimum requirements and assessment criteria
Prerequisites: none
Procedure: weekly classes
Grading: compulsory attendance, class participation,
Mid-term and final exam
Goals: Acquiring of basic practical mathematical skills
Procedure: weekly classes
Grading: compulsory attendance, class participation,
Mid-term and final exam
Goals: Acquiring of basic practical mathematical skills
Group 3
max. 45 participants
Language: German
LMS: Moodle
Lecturers
Classes
Kurs 3 mit Veronika Zeindlhofer und Philipp Honegger findet Do 14:30 statt
Erste Einheit: 5./6.10.Gruppe 1 (Esther Heid): Freitags 13:00-14:30 Hörsaal 4 Chemie Währingerstraße 42 2H23Gruppe 2 (Veronika Zeindlhofer): Donnerstags 13:00-14:30 Hörsaal 3 Chemie Währingerstraße 38 1H04
Gruppe 3 (Veronika Zeindlhofer und Philipp Honegger): Donnerstags 14:30-16:00 Hörsaal 3 Chemie Währingerstraße 38 1H04
Gruppe 4 (Philipp Honegger): Donnerstags 13:00-14:30 Hörsaal 4 Chemie Währingerstraße 42 2H23
Aims, contents and method of the course
Basic arithmetics of complex numbers as well as polar and cartesian coordinates and Euler's theorem, Definition of a function, continuity,
limits, differentiation, extreme value problems, Basic integration techniques (integration by parts and substitution), antiderivatives and definite integrals, Some selected topics in analysis, Taylor and MacLaurin series, partial differentiation, Calcation of extreme values for functions of two variables, first order differential equations (separable, linear inhomogeneous), second order differential equations (linear, constant coefficients), Basic linear algebra (matrices and vectors)
limits, differentiation, extreme value problems, Basic integration techniques (integration by parts and substitution), antiderivatives and definite integrals, Some selected topics in analysis, Taylor and MacLaurin series, partial differentiation, Calcation of extreme values for functions of two variables, first order differential equations (separable, linear inhomogeneous), second order differential equations (linear, constant coefficients), Basic linear algebra (matrices and vectors)
Assessment and permitted materials
Compulsory attendance; the evaluation consists of different performances: active participation and results obtained, written report, theoretical knowledge including final exam (the percentage of the subgrades will be announced by the course leader); each of the subgrades must have a positive evaluation.
Minimum requirements and assessment criteria
Prerequisites: none
Procedure: weekly classes
Grading: mid-term and final exam; participation is compulsory
Goals: Acquisition of basic practical mathematical skills
Procedure: weekly classes
Grading: mid-term and final exam; participation is compulsory
Goals: Acquisition of basic practical mathematical skills
Group 4
max. 45 participants
Language: German
LMS: Moodle
Lecturers
Classes (iCal) - next class is marked with N
Kurs 4 mit Philipp Honegger findet Do 13:00 statt!
Erste Einheit: 5./6.10.Gruppe 1 (Esther Heid): Freitags 13:00-14:30 Hörsaal 4 Chemie Währingerstraße 42 2H23Gruppe 2 (Veronika Zeindlhofer): Donnerstags 13:00-14:30 Hörsaal 3 Chemie Währingerstraße 38 1H04
Gruppe 3 (Veronika Zeindlhofer und Philipp Honegger): Donnerstags 14:30-16:00 Hörsaal 3 Chemie Währingerstraße 38 1H04
Gruppe 4 (Philipp Honegger): Donnerstags 13:00-14:30 Hörsaal 4 Chemie Währingerstraße 42 2H23
- Thursday 05.10. 13:00 - 14:30 Hörsaal 4 Chemie HP Währinger Straße 42
- Thursday 12.10. 13:00 - 14:30 Hörsaal 4 Chemie HP Währinger Straße 42
- Thursday 19.10. 13:00 - 14:30 Hörsaal 4 Chemie HP Währinger Straße 42
- Thursday 09.11. 13:00 - 14:30 Hörsaal 4 Chemie HP Währinger Straße 42
- Thursday 16.11. 13:00 - 14:30 Hörsaal 4 Chemie HP Währinger Straße 42
- Thursday 23.11. 13:00 - 14:30 Hörsaal 4 Chemie HP Währinger Straße 42
- Thursday 30.11. 13:00 - 14:30 Hörsaal 4 Chemie HP Währinger Straße 42
- Thursday 07.12. 13:00 - 14:30 Hörsaal 4 Chemie HP Währinger Straße 42
- Thursday 14.12. 13:00 - 14:30 Hörsaal 4 Chemie HP Währinger Straße 42
- Thursday 11.01. 13:00 - 14:30 Hörsaal 4 Chemie HP Währinger Straße 42
- Thursday 18.01. 13:00 - 14:30 Hörsaal 4 Chemie HP Währinger Straße 42
- Thursday 25.01. 13:00 - 14:30 Hörsaal 4 Chemie HP Währinger Straße 42
Aims, contents and method of the course
Basic arithmetics of complex numbers as well as polar and cartesian coordinates and Euler's theorem, Definition of a function, continuity,limits, differentiation, extreme value problems, Basic integration techniques (integration by parts and substitution), antiderivatives and definite integrals, Some selected topics in analysis, Taylor and MacLaurin series, partial differentiation, Calcation of extreme values for functions of two variables, first order differential equations (separable, linear inhomogeneous), second order differential equations (linear, constant coefficients), Basic linear algebra (matrices and vectors)
Assessment and permitted materials
Compulsory attendance; the evaluation consists of different performances: active participation and homework, mid term and final exam (the percentage of the subgrades will be announced by the course leader).
Minimum requirements and assessment criteria
Prerequisites: noneProcedure: weekly classesGrading: compulsory attendance, class participation,Mid-term and final examGoals: Acquiring of basic practical mathematical skills
Information
Examination topics
Reading list
Association in the course directory
BMB 7, BMG 7, B-BMB 7, B-BMG 7
Last modified: Mo 07.09.2020 15:44
limits, differentiation, extreme value problems, Basic integration techniques (integration by parts and substitution), antiderivatives and definite integrals, Some selected topics in analysis, Taylor and MacLaurin series, partial differentiation, Calcation of extreme values for functions of two variables, first order differential equations (separable, linear inhomogeneous), second order differential equations (linear, constant coefficients), Basic linear algebra (matrices and vectors)