Warning! The directory is not yet complete and will be amended until the beginning of the term.
350207 UE Application of Quantitative Research Methods (2019W)
Continuous assessment of course work
Labels
Registration/Deregistration
Note: The time of your registration within the registration period has no effect on the allocation of places (no first come, first served).
- Registration is open from Mo 09.09.2019 09:00 to Fr 20.09.2019 12:00
- Deregistration possible until Th 31.10.2019 12:00
Details
max. 25 participants
Language: German
Lecturers
Classes (iCal) - next class is marked with N
-
Monday
07.10.
09:30 - 11:00
ZSU - USZ II, EDV Raum, 2. Stock
ZSU - USZ II, Seminarraum II, 4. Stock -
Monday
14.10.
09:30 - 11:00
ZSU - USZ II, EDV Raum, 2. Stock
ZSU - USZ II, Seminarraum II, 4. Stock -
Monday
21.10.
09:30 - 11:00
ZSU - USZ II, EDV Raum, 2. Stock
ZSU - USZ II, Seminarraum II, 4. Stock -
Monday
28.10.
09:30 - 11:00
ZSU - USZ II, EDV Raum, 2. Stock
ZSU - USZ II, Seminarraum II, 4. Stock -
Monday
04.11.
09:30 - 11:00
ZSU - USZ II, EDV Raum, 2. Stock
ZSU - USZ II, Seminarraum II, 4. Stock -
Monday
11.11.
09:30 - 11:00
ZSU - USZ II, EDV Raum, 2. Stock
ZSU - USZ II, Seminarraum II, 4. Stock -
Monday
18.11.
09:30 - 11:00
ZSU - USZ II, EDV Raum, 2. Stock
ZSU - USZ II, Seminarraum II, 4. Stock
Information
Aims, contents and method of the course
Assessment and permitted materials
Grade results from:
2 homework exercises (50%, 20 points - 25%, 10 points each)
Final exam (50%, 20 points)
2 homework exercises (50%, 20 points - 25%, 10 points each)
Final exam (50%, 20 points)
Minimum requirements and assessment criteria
Regular attendence (75%), active participation, 1/2 homework exercises, final exam
Achieving at least 21 out of 40 points
Achieving at least 21 out of 40 points
Examination topics
Will be announced in the course
Reading list
Association in the course directory
Last modified: Th 11.08.2022 00:27
Basics of statistics: descriptive statistics and inferential statistics
Introduction to SPSS, statistical data analysis with SPSSTeaching methods: theoretical inputs, exercises, exercises in spss, E-Learning (Moodle)