Universität Wien
Warning! The directory is not yet complete and will be amended until the beginning of the term.

390043 UK PhD-AW and VGSF: Advanced Time Series And Financial Econometrics (2015W)

Continuous assessment of course work

Registration/Deregistration

Note: The time of your registration within the registration period has no effect on the allocation of places (no first come, first served).

Details

max. 24 participants
Language: English

Lecturers

Classes (iCal) - next class is marked with N

  • Thursday 01.10. 15:00 - 18:15 Seminarraum 6 Oskar-Morgenstern-Platz 1 1.Stock
  • Thursday 08.10. 15:00 - 18:15 Seminarraum 6 Oskar-Morgenstern-Platz 1 1.Stock
  • Thursday 22.10. 15:00 - 18:15 Seminarraum 6 Oskar-Morgenstern-Platz 1 1.Stock
  • Thursday 29.10. 15:00 - 18:15 Seminarraum 6 Oskar-Morgenstern-Platz 1 1.Stock
  • Thursday 05.11. 15:00 - 18:15 Seminarraum 6 Oskar-Morgenstern-Platz 1 1.Stock
  • Thursday 12.11. 15:00 - 18:15 Seminarraum 6 Oskar-Morgenstern-Platz 1 1.Stock
  • Thursday 19.11. 15:00 - 18:15 Seminarraum 3 Oskar-Morgenstern-Platz 1 1.Stock
  • Thursday 26.11. 15:00 - 18:15 Seminarraum 6 Oskar-Morgenstern-Platz 1 1.Stock
  • Thursday 03.12. 15:00 - 18:15 Seminarraum 3 Oskar-Morgenstern-Platz 1 1.Stock
  • Thursday 10.12. 15:00 - 18:15 Seminarraum 6 Oskar-Morgenstern-Platz 1 1.Stock
  • Thursday 17.12. 15:00 - 18:15 Seminarraum 6 Oskar-Morgenstern-Platz 1 1.Stock
  • Thursday 07.01. 15:00 - 18:15 Seminarraum 6 Oskar-Morgenstern-Platz 1 1.Stock
  • Thursday 14.01. 15:00 - 18:15 Seminarraum 6 Oskar-Morgenstern-Platz 1 1.Stock
  • Thursday 21.01. 15:00 - 18:15 Seminarraum 6 Oskar-Morgenstern-Platz 1 1.Stock
  • Thursday 28.01. 15:00 - 18:15 Seminarraum 6 Oskar-Morgenstern-Platz 1 1.Stock

Information

Aims, contents and method of the course

1. Basic Concepts
1.1. Stochastic Processes
1.2. Basic Concepts of Time Series Analysis
1.3. Basic Concepts of Asymptotic Analysis
1.4. Some Matrix Properties

2. Vector Autoregressive Processes
2.1. Stable Vector Autoregressive Processes
2.2. Structural Analysis
2.3. Estimation and Diagnostics
2.4. Examples

3. Cointegrated Processes
3.1. Integrated Processes
3.2. Cointegration
3.3. Cointegrated VAR Models
3.4. Statistical Inference
3.5. Examples

4. Regime Switching and State Space Models
4.1. Threshold Models
4.2. Markov Regime Switching Models
4.3. State-Space Models

5. GARCH and Stochastic Volatility Models
5.1. Univariate GARCH Models
5.2. Multivariate Volatility Models
5.3. Stochastic Volatility Models

6. High-Frequency Based Volatility Estimation
6.1. Realized Volatility
6.2. Constant Volatility Under Noise
6.3. Noise-Adjusted Estimators
6.4. Extensions

7. Models for High-Frequency Financial Data
7.1. Financial Transaction Data
7.2. Dynamic Point Process Models
7.3. Models of the Trading Process

Assessment and permitted materials

1) Take-home exam (45%)
Performing research and writing research report on an empirical problem using data and programming, first week of February 2016
2) Exam, 28.01. 2016 (30%)
3) Assessments in R: Each student has to present one R assessment (maybe group work) (25%)

To pass the course, a minimum of 50% is required.

Minimum requirements and assessment criteria

Aim of the course
i. Providing a sound background in multiple time series analysis, state-of-the-art volatility modeling and econometric models for high-frequency data
ii. Implementing econometric theory using real financial data
iii. Practicing programing in R
iv. Evaluating and validating empirical research

Examination topics

Lectures, discussion, empirical exercises, programming in R

Reading list

Ait-Sahalia, Y., Mykland, P. A., and Zhang, L. (2005): "How Often to Sample a Continuous-Time Process in the Presence of Market Microstructure Noise", Review of Financial Studies, 18, 351-416.
Andersen, T.G., Dobrev, D. and Schaumburg, E. (2012): "Jump-robust volatility estimation using nearest neighbor truncation", Journal of Econometrics, 169, 75-93.
Andersen, T.G., Davis, R.A., Kreiß, J.-P., and Mikosch, T. (2009) :“Handbook of Financial Time Series”, Springer
Barndorff-Nielsen, O. E., Hansen, P.R., Lunde, A., and Shephard, N. (2008): "Designing Realized Kernels to Measure the Ex Post Variation of Equity Prices in the Presence of Noise", Econometrica, 76, 1481-1536.
Barndorff-Nielsen, O. E., Hansen, P.R., Lunde, A., and Shephard, N. (2011): "Multivariate realised kernels: Consistent positive semi-definite estimators of the covariation of equity prices with noise and non-synchronous trading", Journal of Econometrics, 162, 149-169.
Bauwens, L., Hafner, C., and Laurent S. (2012): “Handbook of Volatility Models and their Applications”, Wiley.
Corsi, F. (2009): "A Simple Approximate Long-Memory Model of Realized Volatility", Journal of Financial Econometrics, 7, 174-196
Diebold, F. X., and Li, C. (2006): "Forecasting the term structure of government bond yields", Journal of Econometrics, 130, 337-364.
Diebold, F. X., and Yilmaz, K. (2014): " On the network topology of variance decompositions: Measuring the connectedness of financial firms", Journal of Econometris, 182, 119-134.
Engle, R. F., and Kelly, B. (2012): "Dynamic Equicorrelation", Journal of Business & Economic Statistics, 30, 212-228.
Gouriéroux, C. and Monfort, A. (1995): Statistics and Econometric Models, Cambridge
University Press, Vol. 1
Hayashi, F. (2000): Econometrics, Princeton University Press.
Hasbrouck, J. (2007):“Empirical Market Microstructure: The Institutions, Economics and Econometrics of Securities Trading”, Oxford University Press.
Hansen, P. R., Huang, Z., and Shek, H.S. (2012): "Realized GARCH: A Joint Model for Returns and Realized Measures of Volatility", Journal of Applied Econometrics, 27, 877-906.
Hansen, P. R., and Lunde, A. (2006): "Realized Variance and Market Microstructure Noise", Journal of Business & Economics Statistics, 24, 127-161.
Hautsch, N. (2012): “Econometrics of Financial High-Frequency Data”, Springer.
Hautsch, N., Kyj, L., and Oomen, R.C.A. (2012): "A blocking and regularization approach to high dimensional realized covariance estimation", Journal of Applied Econometrics, forthcoming
Hautsch, N., Kyj, L., and Malec, P. (2013): "Do High-Frequency Data Improve High Dimensional Portfolio Allocation?", Journal of Applied Econometrics, forthcoming
Juselius, K. (2006): “The Cointegrated VAR Model”, Oxford University Press.
Lütkepohl, H. (2006): “New Introduction to Multiple Time Series Analysis”, Springer.
Noureldin, D., Shephard, N., and Sheppard, K. (2012): "Multivariate High-Frequency-Based Volatility (HEAVY) Models", Journal of Applied Econometrics, 27, 907-933.
Pesaran, H.H., and Shin, Y., (1998): "Generalized impulse response analysis in linear multivariate models", Economics Letters, 58, 17-29.
Shephard, N., and Sheppard, K. (2010): "Realising the Future: Forecasting with High-Frequency-Based Volatility (HEAVY) Models", Journal of Applied Econometrics, 25, 197-231.
Taylor, S. J. (2005): ''Asset Price Dynamics, Volatility, and Prediction'', Princeton University Press.
Tsay, R. S. (2010): ''Analysis of Financial Time Series: Financial Econometrics'', Wiley, 3rd edition.
Zhang, L., Mykland, P. A., and Ait-Sahalia, Y. (2005): "A Tale of Two Time Scales: Determining Integrated Volatility With Noisy High-Frequency Data", Journal of the American Statistical Association, 100, 1394-1411.

Association in the course directory

Last modified: Mo 07.09.2020 15:46