Warning! The directory is not yet complete and will be amended until the beginning of the term.
442503 VO Selcted topics in Combinatorics (2015W)
Labels
Details
Language: German
Examination dates
Lecturers
Classes (iCal) - next class is marked with N
- Monday 05.10. 11:45 - 13:15 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 12.10. 11:45 - 13:15 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 19.10. 11:45 - 13:15 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 29.10. 15:30 - 17:15 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 05.11. 15:30 - 17:15 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 09.11. 11:45 - 13:15 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 16.11. 11:45 - 13:15 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 23.11. 11:45 - 13:15 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 30.11. 11:45 - 13:15 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 07.12. 11:45 - 13:15 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 14.12. 11:45 - 13:15 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 11.01. 11:45 - 13:15 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 18.01. 11:45 - 13:15 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 25.01. 11:45 - 13:15 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
Information
Aims, contents and method of the course
The basis for this course will be the book "The Surprising Mathematics of Longest Increasing Subsequences" by Dan Romik. In 1961, Stan Ulam formulated the innocently looking problem of how long the longest increasing subsequence of a permutation of 1,2,...,n would be on average. Not only turned it out that the problem is more difficult than it looks, it led to several fundamental mathematical developments at the interface of combinatorics and probability theory, and these related the problem to numerous other problems, partially in completely different areas. This course will provide an introduction to this circle of problems. Basic knowledge in combinatorics and probability theory will be required.
Assessment and permitted materials
oral exam
Minimum requirements and assessment criteria
Examination topics
Reading list
Dan Romik: "The Surprising Mathematics of Longest Increasing Subsequences",
Cambridge University Press, 2015.
Available at
https://www.math.ucdavis.edu/~romik/book/
Cambridge University Press, 2015.
Available at
https://www.math.ucdavis.edu/~romik/book/
Association in the course directory
MALV
Last modified: Mo 07.09.2020 15:47