Universität Wien
Warning! The directory is not yet complete and will be amended until the beginning of the term.

510009 VU "VGSCO: Optimal Transport" (2024W)

Continuous assessment of course work

Registration/Deregistration

Note: The time of your registration within the registration period has no effect on the allocation of places (no first come, first served).

Details

max. 25 participants
Language: English

Lecturers

Classes (iCal) - next class is marked with N

  • Monday 28.10. 09:45 - 11:15 Seminarraum 1 Oskar-Morgenstern-Platz 1 Erdgeschoß
  • Monday 28.10. 15:00 - 16:30 Seminarraum 1 Oskar-Morgenstern-Platz 1 Erdgeschoß
  • Tuesday 29.10. 11:30 - 13:00 Seminarraum 1 Oskar-Morgenstern-Platz 1 Erdgeschoß
  • Wednesday 30.10. 09:45 - 11:15 Seminarraum 1 Oskar-Morgenstern-Platz 1 Erdgeschoß
  • Wednesday 30.10. 15:00 - 16:30 Seminarraum 1 Oskar-Morgenstern-Platz 1 Erdgeschoß
  • Thursday 31.10. 09:45 - 11:15 Seminarraum 1 Oskar-Morgenstern-Platz 1 Erdgeschoß
  • Thursday 31.10. 15:00 - 16:30 Seminarraum 1 Oskar-Morgenstern-Platz 1 Erdgeschoß
  • Monday 04.11. 09:45 - 11:15 Seminarraum 6 Oskar-Morgenstern-Platz 1 1.Stock
  • Monday 04.11. 15:00 - 16:30 Seminarraum 6 Oskar-Morgenstern-Platz 1 1.Stock
  • Tuesday 05.11. 11:30 - 13:00 Hörsaal 10 Oskar-Morgenstern-Platz 1 2.Stock
  • Wednesday 06.11. 09:45 - 11:15 Seminarraum 6 Oskar-Morgenstern-Platz 1 1.Stock
  • Wednesday 06.11. 15:00 - 16:30 Seminarraum 1 Oskar-Morgenstern-Platz 1 Erdgeschoß
  • Thursday 07.11. 11:30 - 13:00 Seminarraum 1 Oskar-Morgenstern-Platz 1 Erdgeschoß
  • Friday 08.11. 11:30 - 13:00 Seminarraum 1 Oskar-Morgenstern-Platz 1 Erdgeschoß

Information

Aims, contents and method of the course

Assessment and permitted materials

The examination will consist in some exercises quite directly related to the content of the first 12 courses.

Minimum requirements and assessment criteria

Examination topics

Reading list

The course requires some knowledge of measure theory and functional analysis. In case the students are not familiar with these topics, the following textbooks are recommended:
-W. Rudin « Real and Complex Analysis », (chapters 1 to 8) Mc Graw-Hill, 1987
-H. Brezis « Functional analysis, Sobolev spaces and Partial Differential Equations» (chapters 1 to 6), Springer-Verlag 2010)

Further reading (not mandatory) about the course can be found in
-F. Santambrogio «Optimal Transport for Applied Mathematicians », Birkhäuser, 2015.
-C. Villani « Topics in Optimal Transportation », AMS, 2003

Association in the course directory

MAMV, MANV, MSTV

Last modified: Mo 28.10.2024 11:07