Universität Wien
Warning! The directory is not yet complete and will be amended until the beginning of the term.

800514 VO Projective Geometry (2005S)

Projective Geometry

0.00 ECTS (3.00 SWS), SPL 25 - Mathematik

Vorbesprechung am 2. März 2005.

Details

Language: German

Lecturers

Classes (iCal) - next class is marked with N

  • Monday 25.04. 11:00 - 12:00 Seminarraum
  • Tuesday 26.04. 11:00 - 12:00 Seminarraum
  • Wednesday 27.04. 11:00 - 12:00 Seminarraum
  • Thursday 28.04. 11:00 - 12:00 Seminarraum
  • Monday 02.05. 11:00 - 12:00 Seminarraum
  • Tuesday 03.05. 11:00 - 12:00 Seminarraum
  • Wednesday 04.05. 11:00 - 12:00 Seminarraum
  • Monday 09.05. 11:00 - 12:00 Seminarraum
  • Tuesday 10.05. 11:00 - 12:00 Seminarraum
  • Wednesday 11.05. 11:00 - 12:00 Seminarraum
  • Thursday 12.05. 11:00 - 12:00 Seminarraum
  • Wednesday 18.05. 11:00 - 12:00 Seminarraum
  • Thursday 19.05. 11:00 - 12:00 Seminarraum
  • Monday 23.05. 11:00 - 12:00 Seminarraum
  • Tuesday 24.05. 11:00 - 12:00 Seminarraum
  • Wednesday 25.05. 11:00 - 12:00 Seminarraum
  • Monday 30.05. 11:00 - 12:00 Seminarraum
  • Tuesday 31.05. 11:00 - 12:00 Seminarraum
  • Wednesday 01.06. 11:00 - 12:00 Seminarraum
  • Thursday 02.06. 11:00 - 12:00 Seminarraum
  • Monday 06.06. 11:00 - 12:00 Seminarraum
  • Tuesday 07.06. 11:00 - 12:00 Seminarraum
  • Wednesday 08.06. 11:00 - 12:00 Seminarraum
  • Thursday 09.06. 11:00 - 12:00 Seminarraum
  • Monday 13.06. 11:00 - 12:00 Seminarraum
  • Tuesday 14.06. 11:00 - 12:00 Seminarraum
  • Wednesday 15.06. 11:00 - 12:00 Seminarraum
  • Thursday 16.06. 11:00 - 12:00 Seminarraum
  • Monday 20.06. 11:00 - 12:00 Seminarraum
  • Tuesday 21.06. 11:00 - 12:00 Seminarraum
  • Wednesday 22.06. 11:00 - 12:00 Seminarraum
  • Thursday 23.06. 11:00 - 12:00 Seminarraum
  • Monday 27.06. 11:00 - 12:00 Seminarraum
  • Tuesday 28.06. 11:00 - 12:00 Seminarraum
  • Wednesday 29.06. 11:00 - 12:00 Seminarraum
  • Thursday 30.06. 11:00 - 12:00 Seminarraum

Information

Aims, contents and method of the course

Axiomatic treatment of projective geometry. Derivation of Euclidean and various non-Euclidean 2-dimensional geometries from projective plane geometry. Some of them, like Minkowski and Galilei geometry, will be dealt
with in more detail.

Assessment and permitted materials

Minimum requirements and assessment criteria

General insight in geometrical argumentations.

Examination topics

Reading list

H. S: M. Coxeter "The Projective Plane"
M. Berger "Geometry I, II"
D.-E. Liebscher "Einsteins Relativitätstheorie und die Geometrien der Ebene"

Association in the course directory

Last modified: Mo 07.09.2020 15:50