Warning! The directory is not yet complete and will be amended until the beginning of the term.
803754 VO Harmonic Analysis (2003W)
Harmonic Analysis
Labels
Details
Language: German
Lecturers
Classes (iCal) - next class is marked with N
- Tuesday 09.12. 09:00 - 09:55 Hs. 4 des Instituts für Mathematik (Boltzmanngasse 9)
- Wednesday 10.12. 09:00 - 09:55 Hs. 4 des Instituts für Mathematik (Boltzmanngasse 9)
- Thursday 11.12. 09:00 - 09:55 Hs. 4 des Instituts für Mathematik (Boltzmanngasse 9)
- Monday 15.12. 09:00 - 09:55 Hs. 4 des Instituts für Mathematik (Boltzmanngasse 9)
- Tuesday 16.12. 09:00 - 09:55 Hs. 4 des Instituts für Mathematik (Boltzmanngasse 9)
- Wednesday 17.12. 09:00 - 09:55 Hs. 4 des Instituts für Mathematik (Boltzmanngasse 9)
- Thursday 18.12. 09:00 - 09:55 Hs. 4 des Instituts für Mathematik (Boltzmanngasse 9)
- Wednesday 07.01. 09:00 - 09:55 Hs. 4 des Instituts für Mathematik (Boltzmanngasse 9)
- Thursday 08.01. 09:00 - 09:55 Hs. 4 des Instituts für Mathematik (Boltzmanngasse 9)
- Monday 12.01. 09:00 - 09:55 Hs. 4 des Instituts für Mathematik (Boltzmanngasse 9)
- Tuesday 13.01. 09:00 - 09:55 Hs. 4 des Instituts für Mathematik (Boltzmanngasse 9)
- Wednesday 14.01. 09:00 - 09:55 Hs. 4 des Instituts für Mathematik (Boltzmanngasse 9)
- Thursday 15.01. 09:00 - 09:55 Hs. 4 des Instituts für Mathematik (Boltzmanngasse 9)
- Monday 19.01. 09:00 - 09:55 Hs. 4 des Instituts für Mathematik (Boltzmanngasse 9)
- Tuesday 20.01. 09:00 - 09:55 Hs. 4 des Instituts für Mathematik (Boltzmanngasse 9)
- Wednesday 21.01. 09:00 - 09:55 Hs. 4 des Instituts für Mathematik (Boltzmanngasse 9)
- Thursday 22.01. 09:00 - 09:55 Hs. 4 des Instituts für Mathematik (Boltzmanngasse 9)
- Monday 26.01. 09:00 - 09:55 Hs. 4 des Instituts für Mathematik (Boltzmanngasse 9)
- Tuesday 27.01. 09:00 - 09:55 Hs. 4 des Instituts für Mathematik (Boltzmanngasse 9)
- Wednesday 28.01. 09:00 - 09:55 Hs. 4 des Instituts für Mathematik (Boltzmanngasse 9)
- Thursday 29.01. 09:00 - 09:55 Hs. 4 des Instituts für Mathematik (Boltzmanngasse 9)
Information
Aims, contents and method of the course
This course is a continuation of the course on Banach algebras and contains the fundamental definitions and results of abstract harmonic analysis in the special case of the torus group and the real line: Fourier series and Fourier transformation, Riemann-Lebesgue lemma, Fejer's theorem, the Riesz-Fischer theorem, theorem of Plancherel, tempered distributions, references
Assessment and permitted materials
Minimum requirements and assessment criteria
Examination topics
Reading list
Association in the course directory
Currently no association information is available.
Last modified: Fr 12.05.2023 00:28