Universität Wien
Warning! The directory is not yet complete and will be amended until the beginning of the term.

877840 VO Selected topics in Algebra (2005S)

Selected topics in Algebra

0.00 ECTS (4.00 SWS), SPL 25 - Mathematik

Details

Language: German

Lecturers

Classes (iCal) - next class is marked with N

  • Thursday 10.03. 09:00 - 11:00 Seminarraum
  • Thursday 17.03. 09:00 - 11:00 Seminarraum
  • Friday 18.03. 09:00 - 11:00 Seminarraum
  • Thursday 07.04. 09:00 - 11:00 Seminarraum
  • Friday 08.04. 09:00 - 11:00 Seminarraum
  • Thursday 14.04. 09:00 - 11:00 Seminarraum
  • Friday 15.04. 09:00 - 11:00 Seminarraum
  • Thursday 21.04. 09:00 - 11:00 Seminarraum
  • Friday 22.04. 09:00 - 11:00 Seminarraum
  • Thursday 28.04. 09:00 - 11:00 Seminarraum
  • Friday 29.04. 09:00 - 11:00 Seminarraum
  • Friday 06.05. 09:00 - 11:00 Seminarraum
  • Thursday 12.05. 09:00 - 11:00 Seminarraum
  • Friday 13.05. 09:00 - 11:00 Seminarraum
  • Thursday 19.05. 09:00 - 11:00 Seminarraum
  • Friday 20.05. 09:00 - 11:00 Seminarraum
  • Friday 27.05. 09:00 - 11:00 Seminarraum
  • Thursday 02.06. 09:00 - 11:00 Seminarraum
  • Friday 03.06. 09:00 - 11:00 Seminarraum
  • Thursday 09.06. 09:00 - 11:00 Seminarraum
  • Friday 10.06. 09:00 - 11:00 Seminarraum
  • Thursday 16.06. 09:00 - 11:00 Seminarraum
  • Friday 17.06. 09:00 - 11:00 Seminarraum
  • Thursday 23.06. 09:00 - 11:00 Seminarraum
  • Friday 24.06. 09:00 - 11:00 Seminarraum
  • Thursday 30.06. 09:00 - 11:00 Seminarraum

Information

Aims, contents and method of the course

The theory of modules (i.e. "vector spaces" over arbitrary rings) plays a significant role in mathematics and mathematical physics. The first part of these lectures gives an introduction into the basic notions and results of this theory. Then we treat Noetherian modules and give a detailed study of modules over principal ideal domains resp. polynomial rings.The second part
deals with semisimple and Artinian rings and modules. Specific notions as projective (injective) modules, or, e.g. Frobenius algebras are discussed as well as examples from various fields.

Assessment and permitted materials

Minimum requirements and assessment criteria

Examination topics

Reading list


Association in the course directory

Last modified: Mo 07.09.2020 15:50