Universität Wien
Warning! The directory is not yet complete and will be amended until the beginning of the term.

877876 VO Concrete analysis (2004S)

Concrete analysis

0.00 ECTS (4.00 SWS), UG99 Mathematik

Details

Language: German

Lecturers

Classes (iCal) - next class is marked with N

  • Monday 01.03. 15:15 - 16:45 Seminarraum
  • Thursday 04.03. 11:15 - 12:45 Seminarraum
  • Monday 08.03. 15:15 - 16:45 Seminarraum
  • Thursday 11.03. 11:15 - 12:45 Seminarraum
  • Monday 15.03. 15:15 - 16:45 Seminarraum
  • Thursday 18.03. 11:15 - 12:45 Seminarraum
  • Monday 22.03. 15:15 - 16:45 Seminarraum
  • Thursday 25.03. 11:15 - 12:45 Seminarraum
  • Monday 29.03. 15:15 - 16:45 Seminarraum
  • Thursday 01.04. 11:15 - 12:45 Seminarraum
  • Monday 19.04. 15:15 - 16:45 Seminarraum
  • Thursday 22.04. 11:15 - 12:45 Seminarraum
  • Monday 26.04. 15:15 - 16:45 Seminarraum
  • Thursday 29.04. 11:15 - 12:45 Seminarraum
  • Monday 03.05. 15:15 - 16:45 Seminarraum
  • Thursday 06.05. 11:15 - 12:45 Seminarraum
  • Monday 10.05. 15:15 - 16:45 Seminarraum
  • Thursday 13.05. 11:15 - 12:45 Seminarraum
  • Monday 17.05. 15:15 - 16:45 Seminarraum
  • Monday 24.05. 15:15 - 16:45 Seminarraum
  • Thursday 27.05. 11:15 - 12:45 Seminarraum
  • Thursday 03.06. 11:15 - 12:45 Seminarraum
  • Monday 07.06. 15:15 - 16:45 Seminarraum
  • Monday 14.06. 15:15 - 16:45 Seminarraum
  • Thursday 17.06. 11:15 - 12:45 Seminarraum
  • Monday 21.06. 15:15 - 16:45 Seminarraum
  • Thursday 24.06. 11:15 - 12:45 Seminarraum
  • Monday 28.06. 15:15 - 16:45 Seminarraum

Information

Aims, contents and method of the course

This course is based on the books "Concrete Mathematics: A Foundation for Computer Science" by Graham-Knuth-Patashnik and "Finite Operator Calculus" by Gian-Carlo Rota. It may be regarded as a supplement to "Discrete Mathematics" since among other things Binomial coefficients, Stirling numbers, formal power series and the solution of recursions are studied from the point of view of analysis. Special emphasis is laid upon concrete problems and the magical power of beautiful formulas and of the symbolic method. It contains an introduction to the calculus of differences and to the umbral calculus. Special topics treated are: difference equations, Bernoulli and Euler numbers with applications to infinite series, Euler's summation formula, Fibonacci numbers, the Stern-Brocot tree and continued fractions, and a thorough introduction to sequences of binomial type and Sheffer sequences such as Hermite or Laguerre polynomials.
There are no prerequisites other than the introductory courses on analysis and linear algebra. But in order to get a "feeling" for the theory you must do concrete problems. So it is highly recommended to join the proseminar.

Assessment and permitted materials

Minimum requirements and assessment criteria

Examination topics

Reading list


Association in the course directory

Currently no association information is available.

Last modified: Mo 07.09.2020 15:50