Warning! The directory is not yet complete and will be amended until the beginning of the term.
895048 SE Seminar (topology) (2003W)
Seminar (topology)
Continuous assessment of course work
Labels
Details
Language: German
Lecturers
Classes (iCal) - next class is marked with N
- Thursday 02.10. 13:20 - 14:50 Seminarraum des Instituts für Mathematik (Boltzmanngasse 9)
- Thursday 09.10. 13:20 - 14:50 Seminarraum des Instituts für Mathematik (Boltzmanngasse 9)
- Thursday 16.10. 13:20 - 14:50 Seminarraum des Instituts für Mathematik (Boltzmanngasse 9)
- Thursday 23.10. 13:20 - 14:50 Seminarraum des Instituts für Mathematik (Boltzmanngasse 9)
- Thursday 30.10. 13:20 - 14:50 Seminarraum des Instituts für Mathematik (Boltzmanngasse 9)
- Thursday 06.11. 13:20 - 14:50 Seminarraum des Instituts für Mathematik (Boltzmanngasse 9)
- Thursday 13.11. 13:20 - 14:50 Seminarraum des Instituts für Mathematik (Boltzmanngasse 9)
- Thursday 20.11. 13:20 - 14:50 Seminarraum des Instituts für Mathematik (Boltzmanngasse 9)
- Thursday 27.11. 13:20 - 14:50 Seminarraum des Instituts für Mathematik (Boltzmanngasse 9)
- Thursday 04.12. 13:20 - 14:50 Seminarraum des Instituts für Mathematik (Boltzmanngasse 9)
- Thursday 11.12. 13:20 - 14:50 Seminarraum des Instituts für Mathematik (Boltzmanngasse 9)
- Thursday 18.12. 13:20 - 14:50 Seminarraum des Instituts für Mathematik (Boltzmanngasse 9)
- Thursday 08.01. 13:20 - 14:50 Seminarraum des Instituts für Mathematik (Boltzmanngasse 9)
- Thursday 15.01. 13:20 - 14:50 Seminarraum des Instituts für Mathematik (Boltzmanngasse 9)
- Thursday 22.01. 13:20 - 14:50 Seminarraum des Instituts für Mathematik (Boltzmanngasse 9)
- Thursday 29.01. 13:20 - 14:50 Seminarraum des Instituts für Mathematik (Boltzmanngasse 9)
Information
Aims, contents and method of the course
Assessment and permitted materials
Minimum requirements and assessment criteria
Examination topics
Reading list
Association in the course directory
LA-Ma freies Wf
Last modified: Fr 12.05.2023 00:29
mathematics-diploma students. I suggest to talk on topics from algebraic toplogy (e.g., homology), alternatively, subjects from set-theoretic topology are feasible.