Course Exam
260092 VO Introduction to Photonics (2018S)
Labels
WHEN?
Wednesday
27.06.2018
Die Prüfung findet am 27.06.18 von 09:00-12:00 Uhr im Zimmer von Prof. Fally (Zi 3127) statt.
Registration/Deregistration
Note: The time of your registration within the registration period has no effect on the allocation of places (no first come, first served).
- Registration is open from Tu 12.06.2018 12:46 to Tu 26.06.2018 12:00
- Deregistration possible until Tu 26.06.2018 12:00
Examiners
Information
Examination topics
Linear optics:
Ray optics, Electromagnetic waves, Maxwell's equations and solutions in linear media, spherical wave, Gaussian wave, wave packets
Absorption and dispersion (complex refractive index, Kramers-Kronig), Intensity, Poynting vector, Energy flow
Boundary conditions, phase matching
Waveguides
Crystal optics, polarization states (anisotropic media), birefringence
Interference and coherence, interferometry
Nonlinear optics
Nonlinear dielectric susceptibilities: Electro-optic effect (Pockels, Kerr)
Photorefractive effect I (electro-optic materials), Photorefractive effect II (2-states systems, polymers and composites)
Sum-frequency generation: second harmonic generation (coupled wave theory, DEQs and solution, phase matching, realization)
Holography in nonlinear materials, dynamical holography etc.; Photonic bandgap materials, metamaterials, photonic crystals
Ray optics, Electromagnetic waves, Maxwell's equations and solutions in linear media, spherical wave, Gaussian wave, wave packets
Absorption and dispersion (complex refractive index, Kramers-Kronig), Intensity, Poynting vector, Energy flow
Boundary conditions, phase matching
Waveguides
Crystal optics, polarization states (anisotropic media), birefringence
Interference and coherence, interferometry
Nonlinear optics
Nonlinear dielectric susceptibilities: Electro-optic effect (Pockels, Kerr)
Photorefractive effect I (electro-optic materials), Photorefractive effect II (2-states systems, polymers and composites)
Sum-frequency generation: second harmonic generation (coupled wave theory, DEQs and solution, phase matching, realization)
Holography in nonlinear materials, dynamical holography etc.; Photonic bandgap materials, metamaterials, photonic crystals
Assessment and permitted materials
Oral exam. Slides provided by mFally
Minimum requirements and assessment criteria
Knowledge of wave propagation in optical linear and nonlinear media, ability to apply this knowledge, explain the fundamental concepts and equations.
- Excellent knowledge, can explain and apply derived equations: 1 (SEHR GUT)
- Good knowledge, can explain equations: 2 (GUT)
- Good knowledge, can understand equations: 3 (BEFRIEDIGEND)
- Basic knowledge of concepts, can understand equations: 4 (GENUEGEND)
- Else: 5 (NICHT GENUEGEND)
Last modified: Mo 07.09.2020 15:41